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In the present paper we describe an algorithm for the evaluation of Bessel functions J,(X),
Y,(x) and H,(j)(x) (j = 1,2) of arbitrary positive orders and arguments at a constant CPU
time. The algorithm employs Taylor series, the Debye asymptotic expansions and numerical
evaluation of the Sommerfeld integral, and is based on the following two observations.
1) The Debye asymptotic expansions, contrary to what appears to be a popular belief,
are not expansions in inverse powers of (large) parameter v but turn out to be uniform
expansions in inverse powers of (large) parameter gi = (x - v)/l1/3 for x > v and (large)
parameter 92 = (V - X)/V 1/ 3 for x < v.
2) For x and v such that both Taylor and Debye expansions do not provide a specified accu-
racy Bessel functions can be computed at a constant CPU time via (numerical) evaluation
of the Sommerfeld integral along contours of steepest descents.
In addition, in Appendix B we obtain certain new estimates concerning decay of the func-
tions J1,(x) and -1/Y(x) of fixed x and large v, and in Appendix C we show that functions
J,(x) of integer v provide the solution for a certain system of coupled harmonic oscillators.
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1. Introduction

Bessel functions of argument x and order v of the first kind J,,(x), second kind Y(,(x) and

third kind H( 1)(z), H(2)(x) (Hankel functions), play an important role in physics, mathematics

and engineering. Applications of Bessel functions usually require an algorithm for the rapid

evaluation of these functions with sufficiently high accuracy.

For arguments x , 1 and arbitrary v Bessel functions can be computed via their Taylor

expansions (see Subsection 2.2 below). If x > I and v < x2 these functions can be evaluated

by means of the Hankel asymptotic expansion (see Subsection 2.3 below). However, there exists

a wide region of values of x and v where both Taylor and Hankel expansions do not provide

any reasonable numerical approximation.

Most of thp existing algorithms for the evaluation of Bessel functions in this region are

based on the recurrence relation (see, for example [1])

2vf-ix + f-,'+x) f(-)(1

where f(x) denotes one of the functions J ,(z), Y,(x) or H(j)(x) (j=1,2). The asymptotic

estimate of the complexity of these algorithms is of order O(x) for functions of the first kind

and of order 0(v) for functions of the second and third kind (see, for example, [1]).

In this paper we present an algorithm for the evaluation of an individual Bessel function of

an arbitrary nonnegative order and argument at a constant CPU time. The method is based

on the following two observations.

1) The Debye asymptotic expansions [3], proposed in 1909 and since that time considered

expansions for large orders (see, for example [1], [4], [5], [6]), are found to have a much wider

range of validity. Namely, we show that for x; > v this expansion for function H(1)(x) is a

uniform asymptotic expansion in inverse powers of (large) parameter g, = (x - v)/x (see

Theorem 3.1 and Observation 3.1 below). Moreover, it turns out that for v = 0 the Debye i-

asymptotic expansion coincides with the Hankel asymptotic expansion (see Theorem 3.2 below). [

For x < v the Debye expansions for functions Jr(x) and YL,(z) are proved to be uniform

asymptotic expansions in inverse powers of (large) parameter g2 = (V - X)/V (see Theorem

3.3 and Observation 3.2 below). . Oes
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2) For the values of x and v for which both Taylor and Debye expansions do not provide

a specified accuracy, Bessel functions can be computed (at a constant CPU time) by means of

numerical evaluation of the Sommerfeld integral taken along Debye contours (the definitions of

the Sommerfeld integral and Debye contours are presented in Subsection 2.4 below). It is worth

noting that Debye contours were extensively investigated in connection with the derivations

of various asymptotic expansions for Bessel functions (see, for example, [3], Ch. 8 of [4],

[7]). However, the possibility of using them in numerical computations seems to have been

overlooked.

The plan of the paper is as follows. In Section 2 we summarize certain mathematical

facts to be used in the rest of the paper. In Section 3 we analyze the error terms of the Debye

asymptotic expansions. Numerical evaluation of the Sommerfeld integral is discussed in Section

4. In Section 5 we briefly discuss the implementation of our numerical scheme. In Section 6

we present a formal description of the algorithm. In Appendix A we discuss round-off errors.

In addition, in Appendix B we obtain asymptotic solutions (with respect to v) of equations

J,(x) = c and -1/Y(x) = c for large fixed positive x < v and sufficiently small c > 0. Finally,

in Appendix C we show that functions J,(x) of integer v describe displacements of coupled

harmonic oscillators on a line.

2. Relevant mathematical facts

In this section we present a number of well known formulae to be used in the rest of the paper.

2.1 Connections between the three kinds of Bessel functions

All the formulae presented in this subsection can be found, for example, in [1].

Functions H(j)(x) (j = 1,2) are expressed through J,(x) and Y,(x) as

H -)(x) = J,,(x) + i Y,(x), (2)

H(2)(x) = J,,(x) - i Y,(x). (3)

For nonnegative x and v, both J ,(x) and Y,(x) are real. Thus

Jg(x) = Re HP)(x), (4)
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Y(x) = Im H,')(x), (5)

H, 2)(x) = HY)(x)- 2iIm H,(1)(x). (6)

2.2 Taylor expansions

For small arguments, function J,(x) is normally evaluated via the formula

J,(x) = 2 4 k! (_ + k + 1)' (7)
k=O

If v is not an integer, function Y.(x) is computed as

Y (x) = J,(X) cos(r v) - g_,(s) (8)
sin(n v)

For integer v the formula (8) can not be used and is replaced by
Yx) 1 (X) -v )k (V-_k -1)! 2 2

= - -- ) +- In J (x)
7r 2 k=O k!"

1(Xv -( k (O(k + 1) + k(v + k + 1)), (9)

7r ~2) ~4J T (i+k)! k!k=O

where O(z) = Ji ln(F(z)). Formulae (7)-(9) can be found, for example, in [1].

2.3 The Hankel asymptotic expansion

The Hankel asymptotic expansion has the form (see, for example, [1], Ch. 7 of [4) , Ch. 7 of

[5])

2 IN i~

H,(,)(X) = exp(iX(x,v)) bn(v) + N+I,h(\,X) , (10)

where

r 1
X(x, ') = x - 2rv, (11)

and eN+,h(v, X) is the error term.

Coefficients bn(v) satisfy the recurrence relation

bo(v)-- 1, (12)
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(n + 1)2 -4V 2 bn(v), (n = 0, 1,.), (13)8 (n4-1)

whereas the error term ON+l,h(V, x) is bounded by (see, for example, Ch. 7 of [5])

ION+,h(V,X)I 2 bN+v) .exp (v2- (14)

2.4 The Sommerfeld integral

All the formulae, presented in this subsection can be found, for example, in Ch. 8 of [4].

For the values of x and v for which both Taylor and Pabye expansions do not prov;e a

specified accuracy we computed function H,(1)(x) by means of numerical evaluation of the so

called Sommerfeld integral:

HV)(x) = - - exp(x sinh(w) - vw) dw. (15)

Following [4] we will write

w = u + iv, (16)

where both u and v are real. Integration in (15) is performed along an arbitrary contour that

has the following asymptotes:

lim v = O, (17)

lim v = ir. (18)

Observation 2.1

As paths of integration in (15) it is natural to choose the so called Debye contours on which the

integrand of (15) does not oscillate (see, for example, Ch. 8 of [4]). We note in passing that the

Debye contours are a particular example of contours of steepest descents that axe widely used

for the evaluation of the asymptotic expansions of certain contour integrals (see, for example,

Ch. 8 of [4], [5], [6]).
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The Debye contours u = u(v) are curves on the complex w-plane (16) that (generally

speaking) are implicitly defined via equations

p(u,v) = 0. (19)

For x> v,

p(u, v) = cosh(u) -sin(P3) + (v -,0) cos(3)
sin(v) (20)

where
LI

cos(/3) = - (21)X

It immediately follows from (21) that for nonnegative x and v,

0< < 7 (22)
2*

For x < v,

p(u,v)=v, if u<a, (23)

and

p(u,v) = cosh(u) - cosh(a) v if u > a, (24)
sin(v)

where

V
cosh(a) = (25)

For x v,

p(u, v) = v, if u < O, (26)

and

V
p(u, v) = cosh(u) - nv, if u > 0. (27)

sin(v)'
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Finally we note that all the Debye contours, associated with function H,(W)(x) (of nonnega-

tive x and positive v) lie within the strip

0 < V < Tr. (28)

Graphs of Debye contours can be found, for example, in Ch. 8 of [4].

2.5 The Debye asymptotic expansions

In this subsection we present formulae for the Debye asymptotic expansions that can be found

(in a slightly different form) in Ch. 10 of [5].

For v < x,

H()(x) (2 1) exp(i771) (-1)nun(P) + ON+1,2(vP)) , (29)

where

71 = (x 2 - v2) _ v arccos ( -4 (30)

ON+1,2(V, P) is the error term, polynomials un(t) are defined in (35), (36) below, and

p- i V- 2 (31)

For x < v,

J (x) = 1+ 2 (V2 - X2) 4 E V +-ON+1,1(V,P)) (32)

1 GN+1,1(V,0) (2ir)' (v1 (no

-W _( 12 exp(n2) I( N(-1)n~n(P + ON+1,2 (V, P)) (33)
7 ( 2 2)'i E *

where

772 = V In + (( (V x2, (34)

and ON+1,1(v,p) and ON+1,2(,p) are the error terms.

Polynomials un(t) are defined by the formulae

1 _5t3), (5
UO(i) = 1, u1 (t) = i- (3t -(35)
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U (t) 1 t2 (1 __t 2 ) dun(t) 1 (1 _ 5r 2 ) un(r)dr,
2 dt +8 J

(n = 0, 1,-..). (36)

The error terms in the Debye expansions satisfy the inequalities

exp (2VfO(u)) Vro,p(UN+l) (37)OtN, (V, P) 2 < xp 2 N1(7

ION+1,1(V,P)l 2exp (2V(ul)) Vp(UN+I) (38)

and
JON+1,2(V,p)1 < 2exp (2Vo(ul)) VO,,(UN+I) (39)

In (37) - (39), symbols Va,b(f) and V,b(f) denote the so called total variations of functions

f(x) and f(ix), respectively (see, for example, Ch. 1 of [51):

Va,b (f) b df (--) Id (40)
Jjdx

Va!b f bdfI) dx. (41)

3. Erro. terms of the Debye asymptotic expansions

In this section we obtain estimates of the error terms of the Debye asymptotic expansions (29),

(32) and (33). We start with a more detailed analysis of the polynomials un(t) defined in (35),

(36).

3.1 The polynomials un(t)

Lemma 3.1

For any n > 1,

un (t) =t n fin(t), (42)

where
n

fi"(t) E ka n t 2 k .  (43)

k=O

7



The coefficients an are defined by the formulae

a = 1, (44)

a 0 if < o r ~ , ( n = 0 , 1 , -- -) ( 4 5 )

a+  = a (n+2k+1 )ak a "'2-+ 8 (2k + n+)-

n (n+2k-2 5 )a-I 2 + 8(2k+n+l))'

(n=0,1,-..; k=0,1,-..,n+l). (46)

Proof

We will prove the lemma by induction. For n = 1 the formulae (42)- (46) immediately follow

from (35). Suppose now that the formulae (42)-(46) are satisfied for certain n = m > 1. Then

t 2 (1- t 2 ) du,(t)
dt

m+1

tm+l Z ((m + 2k)a' - (m + 2k - 2)a_ 1) t2k,  (47)
k=O

and

(1 5- 2 ) um(r)dr =

tm+l M 2k+ I+1 (a' - 5a'i )t 2 k. (48)

k=O

Now substituting (47) and (48) into (36) we observe that (42)-(46) hold for n = m + 1 which

concludes the proof of the lemma. 0

The following corollary is an obvious consequence of the lemma and the formulae (12), (13).

Corollary 3.1

For all n > 0,

a = bn(O), (49)

where the coefficients bn(v) are defined in (12), (13).
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Lemma 3.2

For any t > tj >_ 0,

fin(it) >! ftn(it1) > 0, (50)

fi n(it) < ,(itj) if t 0 nd t O ,( 1

t2n < t2 n ' ift50andii50, (51)

d(it) 0,
dt d O, (54)

fln(it) >! in(t), (53)

dfln(it) - t 54

I dun(it) 

(Proof

It immediately follows from (44)-(46) that for all n > 0 and k < n,

a- (- )k, (56)

where

an > 0. (57)

Substituting (56) and (57) into (43), we observe that for any real t all the coefficients of

the polynomials iin(it) are positive and therefore the inequalities (50)-(54) are satisfied. The

inequality (55) follows from (42), (53) and (54).0

Remark 3.1

While many recurrence relations occurring in mathematical physics are numerically unstable,

the recursion (46) is numerically stable since according to (56) and (57), both terms in this

relation have the same sign.

The following lemma is an immediate consequence of (42), (52) and (55).
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Lemma 3.3

For any p > 0 and n > 1,

Vo,p(u,) = P du(Idt = (iP) (58)
di d i iti

Furthermore,

VO,p(Un) = jP d td < V'O,p(Un). (59)

3.2 Region x > v

Theorem 3.1

For any

x > V > 0 (60)

the error term iN+1,2(V,P) in the expansion (29) satisfies the inequality

IjN+1,2(V,p)1:<2exp ( 2 3 ) fiN+l(i) (1

where

1 V (62)
X73

Proof

The inequality (60) and the definition (62) show that

_- < 1, (63)
X3

and therefore
1 1

S 1- 1 2 (64)

(W - V2) 2 g, -X-

Now combining (31) with (60) and (64) we observe that

< - (65)
(x2 -/V2)2 g2
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and substituting (65) into (50) we obtain

- X3fin(ip) _< fi. 2-1 (66)
g

Combining the inequalities (51), (63) and (66) we have

fin(ip) <! fln(i) \91 (67)

Substitution of (31), (64) and (67) into (58) yields

1 - f ii(iP) i(i)
1)" VP(u) - < i (68)

Observing that

1ii1(i) = 5' (69)

and substituting (68) and (69) into (37) we immediately obtain the inequality (61). 0

Observation 3.1

Obviously, function H(1)(x) can be viewed not as a function of x and v, but as a function

of x a. the parameter gi defined in (62). Then the estimate (61) shows that for gl > 0

(i.e. x > v) the Debye asymptotic expansion (29) is not an asymptotic expansion in inverse

powers of (large) parameter v but it turns out to be a uniform (with respect to x) asymptotic

expansion in inverse powers of (large) parameter gi. Moreover, as follows from (61), the error

term iN+1,2(v,P) may be small even if v is not large. The following theorem describes the

behavior of the Debye expansion (29) in the limit v - 0.

Theorem 3.2

For any x > 0 and v = 0 the Debye asymptotic expansion (29) and the Hankel asymptotic

expansion (10) are identical.

Proof

From the definitions (11) and (30) we have

l (x2  _ 1v2) exp(i771) = 2 exp(i(xv))

( exp(i(x - r)). (70)
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Next, combining (31) with (42) and (43) we obtain

(1)n ________ -V , )k
lim -;u(ip ):.-l (-) = a( ). (71)

Now substituting (70) and (71) into (29) and taking into account (49) we see that (for v = 0)

the expansions (10) and (29) are identical. 0

3.3 Region x < v

Theorem 3.3

For any

v > X > 0 (72)

the error terms eN+1,2(L,p) of the expansion (32) satisfies the inequality

IOeN+1,2(L,P)I < 2exp (2 ) iN+I(i) (73)
\3.22 92

where

92 I (74)
V/3

Furthermore, the error term ON+I,l(V,p) of the expansion (33) is bounded by

ION+1,(L,p)f <2exp ( 2 ) UN+1 (i) 75)
3 92

Proof

Substitution of (59) into (38) yields

I8N,2(v,P)I S 2exp 2V,(uj) j O,p(UN+ ) (76)
LI / N+l

Now the proof of the inequality (73) becomes almost identical to that of the inequality (61)

(see Theorem 3.1) and we omit it.

To prove (75) we observe that for x < v,
LI

p V  > 2(77)
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Therefore

VPU PIdi (td) dt <=d Vo,p(u,,). (78)

Substitution of (78) into (38) produces

,O,.,l(v,p){ :52exp 2Vo,p(uj)_ V0,P(u, ) (79)

Comparing (39) and (79) we see that the proof of (75) is reduced to the proof of (73). 0

Observation 3.2

Parallel to Observation 3.1, we can view function HW)(x) not as a lunction of x and v but as

a function of v and the parameter 92 defined in (74). Then the estimates (73) and (75) mean

that the Debye asymptotic expansions (32) and (33) are not expansions in inverse powers of

(large) parameter v but turn out to be uniform (with respect to v) asymptotic expansions in

inverse powers of the (large) parameter 92 (compare with Observation 3.1).

Observation 3.3

In Appendix B it is shown that for x > 1 and v > x + const -x3 function J (x) becomes small

whereas function 1Y ,(x)I becomes large. Therefore, for sufficiently large x the most important

part (in terms of applications of Bessel functions) of the region x < v can be estimated as
1

X < V < + const - X3, (80)

Combining (62), (74) and (80) we have

92 = 1911 (1O 1 )) . (81)

The estimate (81) and Observation 3.2 show that in the region (80) for x > 1 the Debye

asymptotic expansions (32) and (33) behave almost like uniform expansions in inverse powers

of (large) parameter

V-x

--- = -g9. (82)
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4. Certain properties of the Sommerfeld integral

In this section we discuss certain analytical properties of the Sommerfeld integral (15) relevant

to its numerical evaluation.

4.1 Region x > v

It immediately follows from Ch. 8 of [4] that the explicit representation of the Sommerfeld

integral (15) on the Debye contours defined by (19) and (20) has the form

1exp(i(x sin(#) -v)) 7d 
+ i exp(z41 ) dv, (83)

14')(x) = e--~ sn/3-/)

where

4 (v, u(v),3) - cos(v) , sinh(u) - cos(O3) -u, (84)

and

du sinh(u) sin2(v) (sin(v -/3) - (v -,3) -cos(3) -cos(v)). (85)

In (83)-(85) function u = u(v) is evaluated via (19), (20) and the parameter /3 is defined in

(21).

Theorem 4.1(see §8.31 of [4])

Function 1 (v, u(v), 0), defined in (84), is a nonpositive decreasing function of Iv - #I. It has

the only maximum at v = /3 where

0i(/,u(P),6) = 0. (86)

The following corollary is an immediate consequence the theorem.

Corollary 4.1

The equation

x k(/,u(P), 0) = In(c). (87)

with C E (0, 1), v E (0, r) and x > 0 has two and only two solutions 01 and /32 such that

1 </8 < 02. (88)
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Theorem 4.2

For any P 3 0,

= - sin(8) (v - #)2 + O((v - 3)3). (89)

Proof

From (20) for any f3 0 we have

U = (v - 0) + o((v- (90)

Substituting (90) into (84) we immediately obtain (89). 03

In the rest of the subsection we will estimate the domain on the x - v plane where the

integral (83) can be evaluated at a constant CPU time. We start with the following remark.

Remark 4.1

For any 0 < v«<1,

exp(x04) -exp (f(x v)), (91)

where function f(x, v) > 0. This formula is an immediate consequence of (19) and (20).

As follows from (19), (20), (84), (85) and Theorems 4.1 and 4.2 the integrand of (83) is a

nonoscillatory function of v. Moreover, for small Iv - 01,

du .(V +v ) exp(x41)=

du +iexp (-xsin(fl)(v -9/)2) (1 +01(v - 6)), (92)

where 01 (v - 0) = O(v - 0) is the error term.

Next, suppose that

x-sin(/) > 1, (93)

and

'a > C (94)

(x sin(/3))2

15



where

C, 1(95)

is a (positive) constant.

Observation 4.1

The condition (93) means that the domain where the integrand of (83) is (numerically) not

zero is sufficiently small. The condition (94) shows that the distance between the maximum of

the integrand of (83) v =/3 and its singularity at v = 0 (see Remark 4.1) is larger than several

standard deviations of the Gaussian in (92). Therefore, if the inequalities (93) and (94) are

satisfied then the error term 01(v - /3) in (92) can be approximated (with high accuracy) by a

low-degree polynomial of (v - /3) in the domain, where the integrand of (83) is (numerically)

not zero. Thus in this case the evaluation of the integral (83) by means of the trapezoidal rule

becomes a superalgebraically convergent procedure. Moreover, the number of nodes of this

quadrature formula is (asymptotically for large x sin(P3) and C1) independent of v and x.

Theorem 4.3

For any

x > 1 (96)

and

* < x - D, x3, (97)

where D1 - 1 is a (positive) constant, the inequalities (93) and (94) are satisfied.

Proof

We will prove the inequality (93) first. From the definition (21) we have

sin(/3) = 1 - V , (98)

and thus

xsin(/3)= (X2 _ v2)2 (99)

16



Combining (96), (97) and (99) we have

x sin(fl) > (2D,)'2 - x23 (i + 0 X2) 1, (100)

which completes the proof of (93). Now we turn to the proof of the inequality (94).

Owing to (22) we have 3 _ sin(3) and therefore we can replace the inequality (94) by a

stronger one

sin(#) > s( (101)si (X3 i(3)

Substituting (98) into (101) we have

3

X2. ( T2 > C 1. (102)

Using (97) we can estimate the left-hand side of (102) as
3

x . 1 >-1 Dl -- D.z X >21 (103)

Now it follows from (101)-(103) that the inequality (94) is satisfied if
4

D, > + C , 1,(14 (104)
2

where c > 0 is any (small) number. 0

The inequalities (96), (97) and the estimate (104) define the domain on the x - v plain

where the conditions (93) and (94) are satisfied and therefore numerical integration of (83)

by means of the trapezoidal formula can be done at a CPU time independent of x and v (see

Observation 4.1).

4.2 Region x < v

It follows from Ch. 8 of [4] that the explicit representation of the Sommerfeld integral (15) on

the contours defined by (19), (23) is

I -- I exp(0 2)du, (105)
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whereas on the contours (19), (24) we have

2= iexp(xO3) ( + du dv. (106)

Obviously,

H9)(x) = I, + 12. (107)

In (105) and (106),

02 02(u, ct) = sinh(u) - cosh(a) u, (108)

03 0 3(v, u(v),a ) = sinh(u) cos(v) - cosh(a) u, (109)

and

du h~a (sin(v) - v cos(v)) (110)
dv sin2(v) sinh(u)

Function u = u(v) in (106), (109) and (110) is evaluated via (19), (24) and the parameter a is

defined in (25).

Observation 4.2

Numerical evaluation of the integral (105) can be performed by means of the Gauss-Legendre

quadrature formula with the number of nodes independent of v and x because its integrand is

an analytic nonoscillatory function.

In Theorem 4.4 (see below) it is shown that for any a > 0 the integrand of (106) has

singularities in the complex v-plane. It turns out (see the estimate (111) below) that for a < 1

( i.e. v/x - 1) these singularities lie close to the domain of integration in (106) which impedes

numerical evaluation of this integral. Now we will establish a domain on the x - v plane

where numerical evaluation of (106) (for example, by means of the Gauss-Legendre quadrature

formula) can be performed at a CPU time independent of x and v; the estimate of this domain

is obtained in Theorem 4.7 below.
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Theorem 4.4

For any a > 0 the integrand of (106) has two imaginary complex conjugate branch points a±.

Moreover, for a < 1,

a± = ±(3) ai + O(a 3). (111)

Proof

For imaginary v = is (s is real) equations (19), (24) become

cosh(u(is)) = cosh(a) s (112)
sinh(s)

Therefore, for any a > 0 there exists a parameter s = so such that

cosh(u(iso)) = 1 (113)

and

0 < cosh(u(is)) < 1, Isl > so. (114)

As follows from (113) and (114) the points s± = ±s0 (or, equivalently, the points a± = ±iso)
1

are the branch points of the function sinh(u) = (cosh 2(u) - 1)2 and therefore (see (106) and

(109)) of the integrand of (106).

To prove (111) we must solve equation (113). Combining (19), (24) and (113) we have

cosh(a) = sin(a±) (115)
a4-

Expanding both parts of (115) in (small) parameters a and a±: we immediately obtain estimate

(111). 0

Theorem 4.5 (see §8.31 of [4]).

Function 03 from (109) on the contours defined by (19), (24) is a monotonically decreasing

function of v with the only maximum at v = 0.

Theorem 4.6

For any a 0 0,

02 = sinh(a) - a cosh(a) - sinh(a) v2 + O(v 4 ). (116)
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Proof

For small v and a 6 0 we have from (19), (24)

1 2 coth(a)v2 + 0(v 4 ). (117)

Substituting (117) into (109) we immediately obtain (116). 0

As follows from (19), (24), (109), (110) and Theorems 4.5 and 4.6 the integrand of (106) is

a nonoscillatory function of v. Moreover, for small v,

d + i) exp(xO4) = exp(-x . (a cosh(a) - sinh(a))) x

(d + i exp (-x sinh(a)v2) (1 + 02(v)), (118)

where 02 (v) = 0(v) is the error term.

Observation 4.3

The local behavior of the integrands of (106) and (83) is essentially the same (compare (118)

and (92)). Therefore the conditions under which the integral (106) can be numerically evaluated

at a CPU time, independent of x and v, are equivalent to the conditions (93) and (94) (see

Observation 4.1). These conditions are

x sinh(a) > 1, (119)

and

(x sinh(a)) 10

where the parameters a± are estimated in (111) and

C 2 - 1 (121)

is a (positive) constant. The condition (119) means that the domain where the integrand of

(106) is (numerically) not zero is sufficiently small. The condition (120) shows that the distance

between the singularities of the integrand of (106) a± and the real axis is larger than several

standard deviations of the Gaussian in (118).
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Now the proof of the Theorem 4.3 can be repeated almost verbatim yielding the following

result:

Theorem 4.7

For any

* > 1 (122)

and

* > x + D2 X , (123)

where

D2 -, 1, (124)

is a (positive) constant, the inequalities (119) and (121) are satisfied.

4.3 Region x ;z v

In order to construct an algorithm whose complexity does not depend on x and v in the region
I

Ix - VI < coust .A3, const 1, (125)

(i.e. when the conditions (97) and (123) are violated) we will consider numerical integration

of (15) along the Debye contours defined in (19), (26) and (27). We note in passing that these

contours were extensively used for the derivation of asymptotic expansions of function Hl)'(z)

for x : v (see, for example, Ch.8 of [4], [7]).

Denoting the integral along the contour (19), (26) by J, and the integral along the contour

(19), (27) by J2 it can be shown that
1 0

= = 1 exp(x sinh(u) - vu)du, (126)irt 00I

1= 1- f exp(4,4 ) (i + )dv, (127)

and

H(1)(z) = J1 + J2, (128)
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where

4 -- 4 (v, u(v),7)- sinh(u) cos(v) - u + r (u + i v), (129)

V

=1-- (130)

du _ (sin(v)- v cos(v)) (131)
dv sin 2 (v) sinh(u)

In (127), (129) and (131) function u = u(v) is evaluated via (19), (27).

Observation 4.4

The integral (126) is merely the integral (105) with a = 0 and therefore is can be evaluated at

a CPU time independent of x and v (see Observation 4.2).

Observation 4.5

Obviously, the integrand of (127) is an analytic and (for sufficiently small IT7) nonoscillatory

function of v. Therefore the integral (127) can be computed (for example by means of the

Gauss-Legendre quadrature formula) at a CPU time independent of v and x. We will show,

however, that for sufficiently large x and -r > 0 the integral (127) can not be evaluated without

an unavoidable round-off error (see Observation 4.6 below). The inequalities (141) and (142)

below estimate the range of parameters x and v where this error is small (see also Remark 4.2

below).

Theorem 4.8

For any 0 < r < 1 function Re0 4 has the maximum at

1

Vmax 1 (3r)2(1 + 0(r)). (132)

Moreover,

13a
4'maz Re ¢4 (vmax,U(Vmax),7) = 3 r2(1 + 0(r)). (133)
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Proof

From equations (19), (27) for small v we have

1 2 3
T2 0 + 3 + O(v'). (134)3 45.3

Therefore

1 2v3Ov, 15
sinh(u) cos(v)) = v ?- "--v + 0v) 15

32 5.32

and

4 3

sinh(u) cos(v) - u 1 v3 + 0(vs). (136)
9.32

Substitution of (134) and (136) into (129) produces

1 4 3+ )+OV)Re04=T rv-- v 3 + (T v3 )+0( 5 ). (137)
2 .32

The formulae (132) and (133) are a consequence of (137). 0

Theorem 4.9 (see, for example, Ch.8 of [4]).

In the region (125) for x > 1,

IH9)(x)I = O(x-k). (138)

Observation 4.6

It follows from the estimate (133) that for sufficiently large x the integrand of (127) may be

large whereas, according to Theorem 4.9, the integral itself is (asymptotically) small. Therefore

in this case there exist cancellations that account for the round-off errors.

We do not expect significant cancellations if

X~maz < C 3 , (139)

where

C 3  1 (140)
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is a (positive) constant and ¢max is estimated in (133). The condition (139) means that in

order to avoid cancellations the maximum of the integrand (127) must be of order 0(1).

Using (130) and (133) it is easy to show that for

x > 1 (141)

the condition (139) is equivalent to the condition

v < x - D3 x3 +O(X-, (142)

where

D3 = (3 C3 )3 " 1, (143)

In fact, owing to (138), there must be another condition of the absence of cancellations in

addition to (139). Namely, the domain in v where the integrand of (127) is not small must be

of order 0(x-). It can be shown, however, that this condition holds if (142) is satisfied.

We will briefly discuss the case of r < 0. Now the integrand of (127) does not have a

maximum for v : 0. However, in the vicinity of v = 0 this integrand is of order 0(l). On the

other hand, function J,(x) becomes small if roughly speaking (see Appendix B)
1

v> x + const z3. (144)

Therefore function J,(x) (i.e. the real parts of HP )(x)) can not be evaluated by means of (127)

without an unavoidable round-off error if v satisfies (144) with const > 1. It can be shown,

however, that for

v < x + D 4
X

3, (145)

where

D 4 ev 1 (146)

is a (positive) constant, both real and imaginary parts of function H 1)(x) can be evaluated

without a significant round-off error.
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Remark 4.2

The numerical computation of the integrals (126) and (127) provide a method for the evaluation

of function H(1)(x) at a constant CPU time in the region (123) i.e. where the algorithms

discussed in Subsections 4.1 and 4.2 fail (compare the inequalities (97), (123) and (142), (145),

as well as the estimates (104), (124) and (143), (146)). Moreover, for x - 1 and x - v the

integral (127) can be evaluated without a significant round-off error even if (142) is violated

because in this case the mpximim of its integrand is of order 0(1) (see Theorem 4.8 and

inequality (139)).

5. Implementation of the algorithm

. .'* seLion we present certain details of the implementation of the algorithm for the evalu-

atirrt of function .'()(x) via the Debye asymptotic expansions (see Section 3) or the contour

integration (see Section 4). This scheme was tested to provide double precision accuracy (at

least t... teen digits) for

2 < x < 100000 (147)

and

0 < v < 100000 + 16 .1000003. (148)

For

x < 2,

V, > 0 (149)

function H()(x) can be evaluated by means of Taylor expansions (see Subsection 2.2). Discus-

sion of the round-off errors for both Taylor expansions and the contour integration is presented

in Appendix A.

5.1 Implementation of the Debye asymptotic expansions

Formulae (42)-(46) make numerical evaluation of the Debye asymptotic expansions (29), (32)

and (33) fairly straightforward. However, we must estimate the values of parameters x and v
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for which these expansions provide a specified (in our case double precision) accuracy. It is

necessary to point out that the computation of a N-term Debye expansion involves evaluation of

n-order polynomials u,(t) for n = 0, 1,-.- , N (see Lemma 3.1). In other words, the complexity

of this procedure is of order O(N 2 ) operations and therefore for given x and v it is desirable

to choose N as small as possible. The following considerations provide a simple recipe for the

optimal (for given x and v) truncation of the Debye expansions.

The estimates (61), (73), (75) and Observation 3.3 show that for any fixed x > 1 and given

N there exists a constant gN > 1 such that the error terms of the expansions (29), (32) and

(33) (truncated after N terms) become small if x and v satisfy the inequality

IV - XI > 9N X3. (150)

Our numerical experiments showed that for

x > 17 (151)

and v satisfying (150) the Debye expansions (29), (32) and (33) provide double precision ac-

curacy. The estimates of constants 9N are presented in Table 1; these values were obtained by

means of both analyzing the inequalities (61), (73), (75), and comparing the estimates provided

by the Debye expansions with that by contour integration.

The optimal (for given x and v) truncation of the Debye expansions can be done by the

following procedure. First we compute the parameter g = Ix - VI/X , then, using Table 1, find

gN < g closest to g and retain N terms corresponding to this 9N. For example, if g = 8 then

9N = 7 and thus N = 13. As we see from Table 1 the Debye expansions fail to provide double

precision accuracy if g < 6.5.

Remark 5.1

In addition to the error term ON+1,1(v,p), estimated in (75), the expansion (32) contains the

error term ON+1,l(v, 0). It can be shown, however, that if the inequalities (150) and (151) are

satisfied then (with double precision accuracy) this term can be neglected.
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5.2 Numerical integration for x > v

As follows from (92), for large x sin(,3) the integrand of (83) is sharply peaked at v = 3, and

thus the interval in v where this integrand is not small may be much narrower than the actual

interval of integration v E (0, 7r). To estimate numerically meaningful domain of integration

in (83) we must find (unique) solutions of equation (87) 31 and 32 (see Corollary 4.1) with

c approximately equal to the absolute value of the (specified) error of the evaluation of (83).

After that numerical integration in (83) is restricted to the interval v E (jai, 02).

In accordance with Observation 4.1 and Theorem 4.3 it was found that for

* > 10 (152)

and

* < x -dj x3 (153)

with

d, z 5, (154)

the minimal number of nodes of the trapezoidal formula (see Observation 4.1) needed to e,.al-

uate (83) with double precision accuracy is

n = 25 (155)

independent of x and v. If (152) or (153) are violated then to obtain the same accuracy we

have to increase n. Changing the variable of integration (see, for example, [8])

V = t ,  (156)

it is possible to somewhat improve the estimate (154). It was found that after the change of

variable (156) we can evaluate (83) with double precision accuracy in the region (153) where

d, ; 1.5, (157)

with the number of nodes (of the trapezoidal formula)

n= 37 (158)
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independent of x and v.

5.3 Numerical integration for x < v

We will first consider the integral (105) (see Observation 4.2). Function 02, defined in (108)

on the interval -oo < u < a has the only maximum at u = -a. Moreover, for large x

this function is not small only for u ; -a. Therefore, we must first estimate the interval

u E (al, a2) (a . -a < a2 < a) where the integrand of (105) is (with given accuracy) not

zero and restrict the numerical integration to this interval. We evaluated (105) by means of

the Gauss-Legendre quadrature formula. It was found that for

X > 1 (159)

the minimal number of nodes required to evaluate this integral with double precision accuracy

is

n = 45 (160)

independent of x and v.

Now we will discuss the computation of the integral (106). As follows from (118) for

sufficiently large x sinh(a) the integrand of (106) is sharply peaked at v = 0. Therefore we

must first estimate the interval v E (0, a 3) (a 3 < 7r) where the integrand of (106) is (with

given precision) not zero and restrict the numerical integration to this interval (compare with

Subsection 5.1).

The integral (106) was evaluated by means of the Gauss-Legendre quadrature formula.

In accordance with Observation 4.3 and Theorem 4.7 it was found that this integral can be

evaluated with double precision accuracy with the number of nodes

n = 45 (161)

independent of x and v, if x satisfies the inequality (159) and

v > x + d2 x , (162)
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where

d2 .. (163)

5.4 Numerical integration for x ; v

The problem of the numerical evaluation of the integrals (126) and (127) is essentially the same

as that of the integrals (105) and (106) (see Subsection 5.2) and here we will briefly discuss the

results of our numerical experiments.

The integrals (126) and (127) were evaluated by means of the Gauss-Legendre quadrature

formula. In accordance with Observation 4.6 and the estimates (142), (144) it was found

that both real and imaginary parts of these integrals can be computed with double precision

accuracy with the number of nodes

n = 33 (164)

independent of x and v, if

X > 10, (165)

and

Ix - vI < d3 - , (166)

where

d3 z 2. (167)

In addition (see Remark 4.2), this scheme provides double precision accuracy with n defined in

(164) for

1< X< 10 (168)

and

X > v. (169)
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6. Description of the algorithm

In this section we describe the algorithm for the evaluation of an individual function H(')(x)

(and therefore, according to (4) - (6), all other Bessel functions) of nonnegative x and v. The

final algorithm consists of two parts: algorithm A that combines contour integration and Taylor

expansion, and algorithm B that is based on the Debye asymptotic expansions.

6.1 Algorithm A

if x < 2 then compute H(1)(x) via Taylor expansions (see Subsection 2.2).

end if

if x > 2 and v > x + 1.5- x 3 then compute H(1)(x) by means of evaluation of the Sommerfeld

integral along contours (19), (23), (24) (see Subsections 4.2 and 5.3).

end if

if x > 9 and v < x - 1.5. x3 then compute H(1)(x) by means of evaluation of the Sommerfeld

integral along contours (19), (20). (see Subsections 4.1 and 5.2).

end if

if x < 9 or Iv- xI _ 1.5 . I then compute H,()(x) by means of evaluation of the Sommerfeld

integral along contours (19), (26), (27) (see Subsections 4.3 and 5.4).

end if

6.2 Algorithm B

if x > 17 and v < x - 6.5. x3 then compute H()(x) by means of evaluation of the Debye

expansion (29) (see Subsections 4.1 and 5.1).

end if

if x > 17 and v > x + 6.5 . x3 then compute H( 1)(x) by means of evaluation of the Debye

expansions (32), (33) (see Subsections 4.1 and 5.1).

end if

6.3 The final algorithm

if x > 17 and Ix - vI > 6.5. x3 then compute H(1)(x) by means of the algorithm B
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else compute HS1 )(x) by means of the algorithm A

end if

6.4 Timing

A computer (FORTRAN) program using the algorithm described in the preceding sections was

implemented and tested on Sun SPARCstation 1. This program consists of approximately 2000

executable lines.

We compared the time for the evaluation of function H,(R)(x) by our algorithm with the time

required to compute this function by means of recurrence relation (1) (for increasing orders)

in case of integer v. It was found that in the range of validity of the Debye expansions our

algorithm catches up with the recursion for v ; 10; in the region where the contour integration

is used the same happens for v z 800. For arguments x < 17 the algorithm is approximately

20 times slower than the recursion.

8. Conclusions

In the present paper we have shown that the Debye asymptotic expansions, contrary to what

appears to be a popular belief, are not expansions in inverse powers of (large) parameter v

but turn out to be uniform expansions in inverse powers of (large) parameter g, = (x - v)/x3

for x > v and (large) parameter g2 = (v - x)/V for x < v (see Theorems 3.1, 3.3 and

Observations 3.1 and 3.3). For x and v such that both Taylor and Debye expansions do not

provide a specified accuracy we have demonstrated that function H,,)(x) can be computed

at a constant CPU time via (numerical) evaluation of the Sommerfeld integral along contours

of steepest descents (the Debye contours). Obviously, numerical integration along contours of

steepest descents can be applied for the evaluation of other functions of mathematical physics.

In particular, it can be used for the computation of Bessel functions of complex arguments and

orders (the classification of the Debye contours in case of complex x and v can be found, for

example, in Ch. 8 of [4]).

In addition, we have obtained new estimates concerning decay of functions J,(x) and

-1/Y,,(x) of fixed x > 0 and large positive v, (see Appendix B). Finally, we have shown that
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Bessel functions of the first kind and integer orders provide a solution to a system of differential

equations for a chain of coupled harmonic oscillators (see Appendix C).

The author would like to thank Professor Vladimir Rokhlin for useful discussions and for

his interest and support.
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Appendix A

Round-off errors

In this Appendix we briefly discuss round-off errors that appear (for certain values of x and v)

when function H)(x) is evaluated via either Taylor expansions or contour integration.

A.1 Taylor expansions

It is well known (see, for example, Ch. 3 of [4]) that for

V = m + a, (170)

where m is an integer and Hj < 1,

J,(x) cos(7r v) ;-- J_ ,(x), (171)

and thus in this case formula (8) produces significant round-off error. However, for any fixed

x > 0 function YL,(x) is an analytic function of v and therefore it can be evaluated by means

of interpolation with respect to the order.

Our experiments showed that that for Hl > 5.10- 4 no significant error occurred. For

smaller al we used Chebychev interpolation of function Y,(x) on the interval

v E [m - 10- 3 , m + 10- 3 ]  (172)

with the number of nodes k=6; this number of nodes proves to be sufficient for the evaluation

of this function with at least thirteen digits for v from (172) and x < 2.

A.2 Numerical integration for x > v

Our experiments showed that for x > 1 it is impossible to compute the integral (83) without

a round-off error unless function 01, defined in (84), is carefully evaluated. This error occurs

because, as follows from (83), for x > 1 small errors of the evaluation of function 01 produce

large errors of the integrand of (83).
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First of all we observe that for small Iv - E1 there appears a loss of accuracy if we evaluate

sinh(u) by means of the formula

sinh(u) = ((cosh(u) - 1)(cosh(u) + 1))2 (173)

with cosh(u) computed via (19), (20). Writing

cosh(u) - h(V, 3) - f2(v, 0) (174)
sin(v)

where

fI(V, 0) = (V - ) cos(p) (175)

f2(v, 3) = sin(v) - sin(P) (176)

we see that for small 1v - 31 each of the functions fl(v,/3) and f 2(v,1) are of order O(v - 3)

whereas the numerator of (174) is of order O((v - p)2).

To avoid the round-off error, cased by the cancellation of the leading terms of the Taylor

expansions of functions (175) and (176), we can first evaluate the numerator of (174) using

its Taylor expansion in (small parameter) (v - P) and after that compute sinh(u) by means of

(173), and u via

u = ln(sinh(u) + cosh(u)). (177)

In addition, a round-off error appears if we evaluate function 01 itself via the formula (84)

Rewriting (84) in an equivalent form

01 = (cos(v) - cos(13)) sinh(u) + (sinh(u) - u) cos(P), (178)

we see, that in order to avoid cancellations (and therefore the lost of significant digits in (178))

we can evaluate functions (cos(v) - cos(#)) and (sinh(u) - u) via their Taylor expansions in

(small parameters) (v - 1) and u, consequently.

Our experiments showed that the integral (83) can be computed without significant round-

off error if we use Taylor expansions in (174) and (178) for Iv - 31 < 0.1.
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A.3 Numerical integration for x ,z, v

It was found that the integral (126) can be computed without round-off error for any x and

v. However it turns out that we cannot evaluate of the integral (127) without a round-off

error which becomes large for x > 1. Like in case x > v, the main source of this error is

the sensitivity of the computation of the integrand of (127) (for large x) to small errors of the

evaluation of function 04 defined in (129). To analyze this effect we observe that as follows

from (134) and (135) for small v functions u and sinh(u) • cos(v) are of order O(v) whereas

their difference (136) is of order 0(v 3 ). Therefore the round-off error of the evaluation of (136)

(and thus of function 04 from (129)) appears (for sufficiently small v) due to cancellation of

the leading terms of the Taylor expansions of (134) and (135).

It follows from our numerical experiments that if the left-hand sides of (134)-(136) are

evaluated via their Tailor expansions for v < 1 then the integral (127) can be computed

without significant round-off error. These expansions are:

u = 0.57735026918962576 v + 0.025660011963983367 v3 +

0.0014662863979419067 vs + 0.000097752426529460445 v7 +

0.74525058224720925.10-5 v9 + 0.61544207267743328. 10-6 V11 +

0.5290-118464628039. 10- 7 v 13 + ... , (179)

sinh(u) = 0.57735026918962576 v + 0.057735026918962576 v3 +

0.0062775386411887880 vs + 0.000655246734 8028954 v7 +

0.000066970892258993254 v9 + 0.67971226373232793. 10- ' v" +

0.68878126140038453.10 - 6 V13 + .-., (180)

u- sinh(u) cos(v) = 0.25660011963983367 v3 +

0.00097752426529460445 v7 +

0.000072409204836637368 v9 +

0.74478039260541289.10 -" v" +

0.74130822294291681.10 - 6 V13 +*... (181)
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Appendix B

Decay of functions J,(x) and -1/Y(x) for the large orders and fixed arguments

In this appendix we discuss the behavior of functions Jr(x) and Y(x) for fixed arguments and

large orders. Theorems B1 and B2 and formulae (219) and (222) contain the principal results

of this appendix.

B1. Statement of the problem

It is well known that for any fixed x > 0 and v -* oo function J,(x) decays rapidly (see, for

example, Ch. 10 of [51) and has an asymptotic behavior defined by the formula

J- 1 -(X (I +- O(V-1)). (182)J()=r(v + 1) 2

However, this approximation is numerically meaningful only for v > x2/4 (see, for example,

Ch. 10 of [5]). On the other hand, often it is necessary to have an accurate estimate of an

order vj > x > 0 such that

J,,(x) < C, (183)

for all v > vj. In (183) x is fixed and E > 0 is supposed to be sufficiently small. This problem

arises, for example, when one implements Miller's algorithm ( see, for example, [1], [2]), or

sums a Neumann series
00

S(x) = E an JM,+n(x). (184)
n0O

It is well known that the behavior of function J,(x) of fixed positive arguments and large

orders is close to that of function -1/Y,(z). For example, for any fixed x > 0 and v - oo this

function decays rapidly (see, for example, [1]) and has the following asymptotic representation

1 1 ( 2))
Y - V)1 (185)-Yv(x'- r (1 + O(V-')).(15

In this appendix we prove that functions J (x) and -1/Y,(x) of any fixed x > 0 are

monotonically decreasing functions of v > x (see Theorems B1 and B2 below). In addition,
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in case of large fixed x > 0 and sufficiently small c > 0 we present approximate solutions of

equations

Jdj(X) = 4, (186)

and

1 E, (187)WY~y(x) - 17

with respect to vi and vy for vi, vy > x.

B2. Certain properties of function J,(x) for v > x.

It was proved in Ch. 10 of [4] that the for any 0 < z < 1,

J, (Vz) > 0, (188)

and

aJ ,(Vz) < 0. (189)
av

Similarly, one can prove the following

Theorem B1
For any v > x > 0,

8Jh,(x) <

0----X- < 0. (190)

Proof

We start with Schkfli's representation of function J,(x) (see, for example, Ch. 6 of [4]):

.4(X) = o+ i exp(x sinh(w) - vw)dw. (191)

Differentiating (191) with respect to v we have

i8 J(.T) 1 oo+lri
= _- f w exp(x sinh(w) - vw)dw. (192)

OV Vzi .o-ir3
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Deforming the contour of integration in (192) into the contour (19), (24) with v E (-7r, 7r) we

obtain

49J,(X) _ 1 fT1 du\
9Vg -r J( (u + iv) i + dv exp(xsinh(u) cos(v) - vu)dv, (193)

where the derivative du/dv is defined in (110). On this contour,

u > 0, (194)

du(v) du(-v)

dv dv

Combination of (193), (194) and (195) yields

I9JL,(X) _ rr du
=J ) - u + V exp(x sinh(u) cos(v) - vu)dv. (196)

Finally, for v E (0, 7r) we have from (110)

dudu > 0. 
(197)dv -

The conclusion of the theorem follows from (194), (196) and (197). 0

Observation Bi

It follows from formula (188) and Theorem B1 that for any v > z > 0 (x is fixed) equation

(186) has at most one real solution. Moreover, if such a solution exists, then the inequality

(183) is satisfied for all v > vi.

BS. Certain properties of function Y,(x) for v > x.

Turning to the discussion of the behavior of function Y,(x) for v > x > 0 we will first prove

the following

Lemma Bi

For any v > z > 0,

Y,(X) < 0. (198)

38



Proof

Combining formulae (5), (105) (106) and (107) we have
1_f o1 f du

Y(x) = 10 exp(X0 2 )du - 1 1 exp(xO3) dudv, (199)
7r 00 7d

where the parameter a and functions 02 and 03 are defined in (25), (108) and (109), respectively,

and function u = u(v) is evaluated via (19), (23). Now the conclusion of the lemma follows

from (197) and (199). 0

We will now prove the analogue of Theorem B1 for function Y1(x).

Theorem B2

For any v > x > 0,

Y-(X) < 0. (200)

Proof

We stz.rt with Nicholson's formula (see, for example, Ch. 9 of (51):

N,,(x) =-- Ko(2xsinh(t)) cosh(2vt)dt = J,(2) + Y](z), (201)

where

Ko(z) = f exp(-z cosh(t))dt (202)

is Macdonald's function of zero order. It immediately follows from (201) and (202) that for

any x > 0,

N,(x)> 0. (203)
Ov

Next, formula (201) yields

4Y9,(x) = 1 (oN.x)_ 2jJ(x)j(x) (204)
- -- 2Y,(x) & v /"

The conclusion of the theorem is a consequence of (188), (190), (198), (203) and (204). 0

The following observation is closely related to Observation B1 above.
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Observation B2

Lemma Bi and Theorem B2 show that for any fixed positive x < v equation (187) has at most

one real solution. Moreover, if such a solution exists,

1 < (205)

for all v > v .

In the rest of the appendix we derive approximate (asymptotic) solutions of equations (186)

and (187).

B4. Asymptotic solution of equation (186).

We will first prove the following simple

Lemma B2

For any Izi < 1,

+n(1 + z) E - + 1n(, z2 ). (206)

Proof

Expanding left-hand side of (206) into Taylor series we have

ln(1 + z) = Z(-1)(+1) zn = 021 Z (207)n=1 n n=l 2n - 1 2 n=1 n'

which concludes the proof of the lemma. 0

An approximation to vj from (186), hereafter denoted by i7j, will be sought as a solution of the

equation

exp(-) = , (208)(27r)'2 ( -X2)-i

where the function on the left-hand side of (208) is the leading term of the Debye asymptotic

expansion (32) with the change of notation V -) .

40



Introducing the notation

Yj = V, (209)
X

and substituting (209) into (34) we obtain

?12=Xy 3  [ + Inh(1 +(1 Y-2)1.) ~(~ 2 (210)

Noticing that for z = (1 - y72) equation (206) becomes
"o 1j 2 )2n_

In (+(1 -y2)1) =(1-yj-2) + 2n+l(1 - ) 2  
-ln(yi), (211)

and substituting (211) into (210) we obtain

2 = Xy (1y)2 ( ) (212)E 2n+ 1n=1

Now, substituting (209) and (212) into (208), we have
-2 00 (1 - y72)p 1 2 ) i

xYj(IY;2 2 -+"1 + -I(yj- 1= ((21r)-2 c). (213)
n=1 2n+1 4

Finally, introducing a new (unknown) function qj which is a positive solution of the equation

-2
yj = x qj + 1, (214)

and substituting (214) into (213) we have

32 3 (1 4 2'1 2 4 13 qj 20x-3 q + O(x- q))2 1n qj + 4)=

- I(2i r] i x'). (215)

We seek the asymptotic solution of (215) under the condition

x > -ln(24 7r2 x3 E) > 1. (216)

Taking into account (216), equation (215) immediately yields the leading term of the asymptotic

expansion of qi:

q, 63, (217)
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where

= 3Y 2-2 (- n(21 7r 2 c) I . (218)

Corrections to (217) can be found by standard methods (see, for example, Ch. 1 of [5]). After

some algebra we obtain

( 1)2 (
1

X 8 30U 3  -

o (6 3~b) 67-6) + 0 (X-2 671)). 29

-)3= (219)

B5. Asymptotic solution of equation (187).

In this subsection we briefly discuss the derivation of the asymptotic solution of equation

(187); this approximate solution will be denoted by 1 ,. Like in case of equation (186) we seek

an approximation to v1, as a solution (for fixed positive x < v) of equation

2 exp(_2) (I _ X2)1 , (220)

where the function on the left-hand side of (220) is the modulus of the inverse of the leading term

of the Debye asymptotic expansion (33) with the change of notation v -,- 4. The technique

employed for solving equation (220) is the same as that for equation (208) and we omit the

computational details. It can be shown that the asymptotic solution of (220) derived under

the condition

x > ln(24 -n 3n C) > 1, (221)

has the form

=7 (6 1-)2 (1 +i () b- 3 ± + (b X_12±+

0-61 ) + 0 (X-2 6-1))
(ln~y) y3 y(222)

where

by = 33 2- (-In(24 7r - E))16 (223)

42



B6. Comparison of exact and asymptotic solutions of equations (186) and (187).

Tables 2 and 3 contain approximations zfj and t-,, obtained via (219) and (222), as well as exact

numerical solutions of equations (186) and (187) for several values of x and c (when solving

equations (186) and (187) their left-hand sides were computed via contour integration for x > 2

and Taylor expansion for x < 2). It is interesting to note, that the formulae (219) and (222)

provide reasonable approximations to vj and v., even for x ;, 1, i.e. when the conditions (216),

(221) are violated.

Remark B1

It is easy to see from (219) and (222), that up to logarithmic (in x) corrections the parameters

t3j and 7y can be estimated as

~j x + cj(E) x3, (224)

41Y x + cy4e) A, (225)

where cj(e) t c,(c) > 0 are independent of x. In other words, the approximations (224), (225)

provide a (rough) estimate of a domain on the x - v plane where functions J,(x) and - 1/Y,(x)

of any fixed x > 1 are small for all v > Pj , i/.

Appendix C

Bessel functions and a chain of harmonic oscillators

In this appendix we show that functions JL,(x) of integer v describe displacements of coupled

harmonic oscillators on a line.

Differentiating the formula (see, for example, [1])

dry(x) 1=x Mz(X) - f-+i(x)), (226)

where f,(x) has the same meaning as in formula (1) we obtain

d2 f,(X) 1
dx 2  = -(fv- 2(X) - 2 f,(X) + f,+ 2(X)). (227)
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Equation (227) can be compared with the differential equations for a system of equal point

masses on a line which interact with their nearest neighbors via the elastic force. The displace-

ment from the equilibrium un(t) (as a function of time t) of an n-th such oscillator satisfies

equation (see, for example, [9])
d2u (t)

M d 2  -= G (Un-W(t) - 2 Un(t) + U.+1(t)), (228)

where M is the mass and G is the elastic constant.

The analogy between (227) and (228) becomes especially transparent if we rewrite (227)

for Bessel functions of the first kind of integer order v = n. It follows from (227) that these

functions of even orders satisfy the system of differential equations

d 2 J__ = 1 (J2,- 2 (x) - 2 J 2 (x) + J 2 +2 (x)), (n = 0, ±1, ±2,-.-); (229)
dX2  4

with the initial conditions (see, for example, [1])

Jo(0) = 1, J 2,(0) = 0, (n = ±1,:±2,--
dJ o = 0, (n = 0,±1,±2,...). (230)

For odd orders we have the same system of equations
dIJ2n+l (X) 1dxJ -= 4(J 2 n- 1(x)-2 J 2n+i(X)+J 2 n+3 (X)), (n = 0,±1,±2,-'-);(231)

but the initial conditions in this case axe different (see, for example, [1]):

J n+1(0)= 0, (n= 0,+1, +2,...);

dJ(x) I _1 dJ-.1(x) 1
dx I=o = 2' dx =O = 2'

dJ2 + (x) = 0, (n = 1,±2, .. ). (232)
dx LO0

Comparing (228) with (229) and (231) we see that function J 2n(x) (or, equivalently, J 2n+l(x))

can be viewed as a displacement of an n-th oscillator at a 'time' x in a chain (228) with

parameters

M=1,
1

G= . (233)
4
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It is interesting to observe, that as follows from (229) and (231) the chains of even and odd

Bessel function do not interact.

This analogy enables us to give a mechanical interpretation of certain properties of Bessel

functions.

1. A zero of a Bessel function can be interpreted as a 'time' at which a corresponding

oscillator passes the equilibrium. Therefore, the well known result, that function Jx() has

infinitely many zeros as x --, oo reflects the obvious physical property that any oscillator (in a

chain with zero friction) passes the equilibrium infinitely many times (as time goes to infinity).

2. The identity (see, for example, [1])

00 
00

E J.(x) = J (x) + 2 E J2(x) = 1 (234)
---oo n=1

means that the oscillators in the chains (229) and (231) under the initial conditions (230) and

(232) oscillate in such a way that the sum of squares of the displacements in both of them does

not depend on 'time' x.

3. In terms of the mechanical model the approximation (219) (or its simplified version

(224)) estimates the range of propagation of the initial perturbation (230) (or (232)) at the

'time' x.

4. It is easy to show that the well known relation (see, for example, [1])

CO 00

E J2,(x) = Jo(x) + 2 J2,(x)=1 (235)
n=-oo n=1

is a consequence of the conservation of momentum in the even chain (229). To prove this we

observe that according to the initial conditions (230) the total initial momentum of the even

chain is zero. Because this system is isolated we can write

0 d = 0 (236)

Z- dx 0

for any 'time' x. Integrating (236) and observing that due to (230) the constant of integration

is equal to unity we immediately obtain (235).

45



5. An interesting formula can be obtained from the law of conservation of energy in the odd

chain (231). Using (233) we find the kinetic K and the potential rf energy of the odd chain

(231) (see, for example, [9]):

1 00 dJ n+ ) 2
K 2 dx ) , (237)

100
I- 8 (J 2n+l(x) - J2 .- 1 (x)) 2 . (238)

Combining (226) and (238) we obtain

1 - (239)

H=2 __ (239)

As follows from (232) and (233) the total initial energy of the odd chain is equal to 1/4 and,

the system being isolated, it remains the same at any 'time' x. Therefore from (237) and (239)

we have

00 (jJ() 2 1 (240)

The formula (240) means that the sum of kinetic energies of the chains (229) and (231) is

independent of 'time' x.

Remark C1

As follows from the preceding analysis Bessel functions are a (rare) example of a discrete

dynamic interacting system where the coordinate of any particle can be computed at a CPU

time independent of the physical time.
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Table 1: Numerical estimates of the parameter gN-

N 5 1 9 113 I17
9N 23 10. 7 6.5

Table 2: Comparison of the numerical solution of (186) with the approximation (219).

C x=1 x =2 z=10 x=50 x=100 x=1000 x=10000 x= 100000
vo 10-1 6.25 8.37 20.10 66.38 120.2 1040.8 10082.1 100163.9

10-' 6.63 8.61 20.22 66.44 120.3 1040.8 10082.1 100164.0
vo 0 10.28 13.15 27.60 78.79 135.8 1074.5 10156.0 100326.7
i 10-10 11.20 13.74 27.83 78.88 135.9 1074.6 10156.0 100326.7
Vo 10- 20  17.18 21.20 39.76 98.33 160.1 1126.2 10267.8 100569.4
F, 10 - 20  19.73 22.85 40.33 98.53 160.2 1126.2 10267.8 100569.4
Vo 1 23.37 28.34 50.25 114.8 180.5 1169.0 10359.7 100768.1
i 10-3  28.14 31.47 51.32 115.2 180.7 1169.0 10359.7 150768.1

Table 3: Comparison of the numerical solution of (187) with the approximation (222).

C x=1 x=2 x=10 x=50 x=100 x=1000 x=10000 x= 100000
vy 10-5  7.42 9.89 23.02 72.26 128.2 1062.5 10139.0 100309.4
vv 10-" 7.53 9.88 22.96 72.20 128.1 1062.4 10139.0 100309.4
vV 1 11.43 14.59 30.18 83.76 142.5 1092.2 10202.1 100443.3
4s 10- 1°  12.06 14.91 30.19 83.70 142.4 1092.2 10202.1 100443.3
vV 10- 20 18.31 22.57 42.07 102.6 165.7 1140.7 10305.2 100663.6
v 10-20 20.59 23.96 42.40 102.6 165.8 1140.7 10305.2 100663.6
vy 10-3° 24.48 29.68 52.43 118.7 185.6 1181.9 10392.9 100851.4
47 10-3  29.00 32.56 53.26 118.9 185.6 1181.9 10392.9 100851.4
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